Postdoctoral (postdoctorate) training is a period of time when you can focus on your research and carve out your niche, so that you can begin to make a name for yourself in your given field. This training period can be challenging, so building a network is essential. An African proverb says that it takes a village to raise a child, and I think the same can be applied to becoming a successful scientist.
If you are in STEM, your postdoctoral training will likely be completed in a lab or team environment. Supervisors are essential for support on big picture research goals, writing grants, and manuscripts, as well as with providing guidance in terms of attending scientific meetings, and forming collaborations. During postdoctoral training it is great to get involved in grant writing, specially, operating grants, being listed as a co-applicant adds to your CV. Other lab members like research assistants, research associates, other postdocs can be a great resource for technical and day to day help, as well as sounding boards for experiments or when you are putting data together for presentations/papers. Mentoring undergraduate and graduate students in the lab is a lot of work, but you learn a lot about yourself and it’s also a good time to figure your personal mentorship style. Well trained students can support you with data collection. For example, a graduate student that I co-supervised helped me write a review article, she sorted through lots of data and was able to respond to the reviewer’s comments, it made the writing process a bit easier. During my postdoctoral training I found it very useful to seek support outside of my lab, I built a network. I did this through networking at scientific meetings and training courses. For example, I was at a meeting in Denmark in 2017 and met a big name in my field. After the meeting I followed up with an e-mail and was then invited to speak at a seminar at his institution. Currently we are collaborating on a book project, as well as we have submitted two proposals for symposia at scientific meetings. I have also attended a few training courses during my postdoctoral training, which also helped me meet people and make connections. If you can’t attend meetings or courses, I would recommend trying to work with people in similar areas, send out e-mails expressing your interest and ask about presenting your research findings at seminar series. Don’t be shy. Form collaborations with others, share your expertise, being open to opportunities can be very beneficial. I think another way of building your network is through your personal connections, for example friends you make in graduate school and during your postdoctoral training might make great collaborations. I have a current collaboration combining my area of expertise with a cancer researcher (not my area of expertise), this collaboration came about through a friend I made in graduate school. In the last 4 years I started to get more involved with social media, through Twitter and writing blog posts. At points during my postdoctoral training I felt isolated and I think that having a network and community online helped with managing the loneliness, depression, and anxiety that comes with being a postdoc on the job market in STEM. Through Twitter I learned about Future PI Slack. By joining this community, I got feedback on my job applications, ideas for publishing my research, and I also offered any advice I had. I think the benefits of having a network both in your lab and outside is much needed for all postdocs or postdocs wanting a career in academia. Being a postdoc in the 21st century is hard and requires lots of resilience. It is important to note that not everyone you meet will be a part of your network, I have tried to be selective, but I still have been let down. But the benefits outweigh the costs. I have connected with each person differently in my network, which has enriched my training and I think my success in my chosen career path.
2 Comments
Last summer (2018), I read this tweet from Alexandria Ocasio-Cortex and it made me realize I was in the midst of my own hustle! Landing a STEM tenure-track position in 2019 is a feat! Less than 20% of PhDs in STEM end up in a faculty position1. This statistic is a result of several factors, one of which includes overcoming a high number of rejections. I was recently on the academic job market and I have decided to write about my experiences.
I completed my PhD in 2012 at McGill University in Canada, afterwards I packed my bags to start a postdoc in Berlin, Germany and then returned to Canada 2 years later. My entire postdoc training lasted 6 years. During my postdoc I published 34 peer reviewed studies (average impact factor of 3.84), 2 book chapters, and 31 abstracts. I obtained $324,000 CDN (~$255,000 USD) in research funding, supervised 26 students in the lab, taught 15 courses, and volunteered my time to service activities (e.g. peer reviews, board membership, etc.). In addition to my research, teaching, and service activities, I applied for 427 faculty positions. From those applications, I had 17 online/telephone interviews and 10 on-campus visits. In 2018, I was offered a tenure track position. It’s been a long journey to get here. When I started my postdoctorate, I didn’t think it would be this difficult, I was very naïve. During my job searching years I read lots of articles, books, and blog posts about different aspects of the process. One thing that resonated with me at the time was that the academic job search is a hard process, there is a lot of rejection, and everyone has their own path. For most job applications I submitted, I did not hear anything. When I made it to the interview process, I always made a point of asking for feedback if I wasn’t selected for the position. Feedback I was given included being told that I didn’t act like PI, didn’t have high impact papers, that I don’t smile enough, or my requests for feedback were ignored. Setting up an on-campus interview was sometimes difficult, one school contacted me for an interview, and they proposed only one date. The chair of the committee yelled at me on the phone because I could not make it due to personal conflicts. When I didn’t hear back from that school, I was relieved. Some schools I interviewed at ended up hiring other Assistant or Associate Professors, which was really difficult to digest, since there was no way I could compete with some that had research funds and a faculty appointment. It was hard to hear some of negative comments or nothing at all, but reflecting back on them, I knew that those were places I did not want to be. A lot of preparation goes into the faculty job applications and process, I will outline what I found most useful for each step. Most faculty applications require a cover letter, CV, research proposal, and teaching statement. Schools in the US also require a diversity statement, this is not common in Canada (yet). My biggest advice for writing job documents, is to get examples and after you have written a draft, get feedback from anyone who will read your documents. Also, start drafting these documents early! Have a set of materials that you can revise for each application, do not re-write any of these documents from scratch, this will take hours. Of course, tailor each application for each position. When I first started writing my job documents, I looked for examples on the internet and then framed my documents to those. I was constantly revising them. Then in 2016 I took a writing course, where I discovered the Professor Is In. I read her book and began using the guidelines she provided. The main message I got from her was to stick to the facts and remove any emotion from your applications. You want to show the search committee you are going to get funding, mentor/teach students, get tenure, and not cause issues. In Spring 2018 I had 5 interviews and no offers; I spent the summer re-writing all my job documents in preparation for the fall 2018. Interestingly enough I was hired at a University where I used ‘older’ job documents, it’s funny how things work out. References letters are a big component of the job application, since 2014 I have seen an increase in the number of jobs that require you to submit references with your application and not when you have been shortlisted. This sucks a lot! References start saying no after you ask them for 10th time, or they just don’t respond to requests. Through FuturePI Slack, I discovered that there are programs like Interfolio where references can upload general letters that can then unanimously be sent to different schools. I think the one downfall of this service is that the letters might not be as tailored, but at least you’ll have a complete application. When I was applying for jobs, I also wrote a lot of my own reference letters, which is hard, but with practice I learned to outline my strongest points, and also used templates from the Professor Is In. More and more schools are doing online interviews prior to inviting candidates for on-campus interviews. For both online and on campus interviews, preparation is key. For the online interview having text prepared is my best advice. Prepare answers to questions like, why do you want the job? What courses do you plan to teach and develop? What is your research program? What will be the experiments you will do within the first year of starting your lab? After you have these questions generated, practice your answers over and over again. Also, generate a list of question you can ask the committee. An important lesson I learned during the interview process was that the questions you ask need to show your interest in the job. So, stick to questions like what support do new faculty at the University of X have for grant writing? What is the teaching load like? Getting an on-campus interview, is a huge achievement. Celebrate it and then get to work, on preparing for it! There are a lot of resources out there, again, I highly recommend the Professor is in. A few points I think are really important, try to relax during the interview, it’s ok to be nervous and it takes some practice to relax, but it is important. Practice your research talk over and over again, if you can add a joke or two, to lighten the mood. I am an informal person, so I found making a joke at the end of my talks by thanking my research subject (aka the mice) always lightens the mood. At dinners ask about the area, good schools (if you have kids), and what social things there are to do in the area. Talk to your interviewers as colleagues. Expect to have a ton of one on one meetings with other faculty members. Be ready to repeat yourself a lot, but remember it is OK. For each meeting with a faculty member prepare a potential collaboration or some way you can help the faculty you are meeting with. Be ready to ask about their research and be excited about it! Be kind to administrative assistants, who are arranging the trip for you. Respond to their e-mails promptly and thank them. Keep in mind you are interviewing the institution as well. There are these so called ‘illegal questions’ (e.g. Will your spouse move with you? Are you pregnant or planning to get pregnant?). They should not be asked, but they will be asked. I think in all 10 on-campus interviews that I had, someone asked me at least one. My strategy was to answer them, quickly and succinctly, then get back to talking about my science, teaching, or service contributions. If you are on the job market or going to be, know this lots of people will offer your advice with good intentions in mind. Some advice will be useful, and others might not be. Seek advice, gather information, but keep in mind your path on the academic job market will be unique. Not all the advice you receive will be applicable to your situation, including this blog, so be selective. Again, I recommend the Professor Is In for every step of your academic training and career development. If you do plan to pursue an academic job, I would recommend joining the Future PI Slack group, I found this group useful for bouncing off ideas, sharing my experiences, getting feedback on my job documents, reading about other experiences, and getting support during the application and interview process. Like I mentioned earlier, I read a lot of articles about the job search process. I found these stories and anecdotes to be beneficial during a very stressful period, so I am adding mine to the universe in hope that it will help someone out there. May the force be with you! References: 1. Jadavji NM, Adi M, Corkery T, Inoue J, Van Benthem K. The 2016 Canadian National Postdoctoral Survey Report. 2016. I wrote this blog post for the American Society for Nutrition.
Parkinson’s disease (PD) is a neurodegenerative disease, this means that the damage in the brain begins several decades before the symptoms appear. In PD, approximately 60% of a specific cell type in the brain die before symptoms appear. The cells that die are dopamine producing cells. Dopamine is a neurotransmitter, which is a chemical in the brain that help cells communicate with each other. Dopamine cells within the substantia nigra, an area of the brain, die in PD. In the figure above you can see dopamine producing cells. PD was first described in 1817 by James Parkinson and the exact cause of PD still remains unknown, researchers and clinicians know that changes in our DNA plays an important role. There is also an environmental component, for example exposure herbicides like paraquat induce PD in people. Another example of an environmental contributor is nutrition. Nutrition, specifically B-vitamins, have been implicated in the onset and progression of PD. An example of a B-vitamin is folic acid, which is well known for its’ role in preventing neural tube defects during early brain development. Additionally, folic acid also helps lower levels of a chemical called homocysteine. High levels of homocysteine are present in PD patients that take levodopa (L-DOPA), a pharmaceutical drug that helps replenish dopamine in the brain. The breakdown of L-DOPA in the body requires methyl groups generated from folic acid, this in turn increases levels of homocysteine. A protein that breaks down folic acid to generate methyl groups is called methylenetetrahydrofolate reductase (MTHFR) and people with reduced levels of this protein are reported to be more affected by PD. In a recent research study from our group we use a mouse model with reduced levels of MTHFR to study how the paraquat model of PD impacts onset and progression. Our study found that reduced levels of MTHFR result in motor impairments in PD mice, these impairments are characteristic of PD. Additionally, the PD mice were sick and had higher had higher levels of inflammation in the substantia nigra. There were also high levels of oxidative stress, which is an imbalance of reactive oxygen and antioxidant production within a brain region closely connected to the substantia nigra. Higher levels of oxidative stress have been implicated in several neurodegenerative diseases. In terms of targeting oxidative stress through pharmaceuticals there has not been much progress. Food stuffs such as red wine, green tea, and blueberries have been reported reduce levels of oxidative stress, through their antioxidant properties, but more investigation is required. Nutrition is an important aspect of health. It is well documented that not all older adults absorb as many nutrients compared to their younger counterparts due to several factors, one being inflammation in the stomach. These recent research findings presented in this blog along with others suggest that adequate nutrition should be a component of health care for patients with PD. I wrote this blog post for the American Society of Nutrition.
According to the United Nations the aging population is growing and by 2050 the number of people aged 60 years old will reach 2 billion worldwide. With the aging population the prevalence of age-related disease is predicted to increase. An example of an age-related disease is neurodegeneration. Dementia can be a result of several pathologies including increased levels of Lewy bodies, as seen in Parkinson’s disease. Cerebrovascular disease is the second most common cause of dementia and is a result of changes in blood flow to or within the brain. Blood flow in the brain can changes because of hypertension, diabetes, smoking, and hypercholesterolemia. Patients with cerebrovascular disease experience cognitive impairment, specifically when trying to remember things or plan events/trips. It is important to note that symptoms can vary from patient to patient. A type of cerebrovascular disease is vascular cognitive impairment. Nutrition is modifiable risk factor for diseases of aging. As people age their ability to absorb nutrients from their diet decreases. Several studies have reported that changes in B-vitamins may play a role in the onset and progression of dementia. Additionally, a study by researchers in the United Kingdom shown that B-vitamin supplementation reduced brain volume loss in areas associated with cognitive decline. A recent international consensus statement from leaders in the field suggests that deficiencies in B-vitamin metabolism should be considered when screening dementia patients. My research using model organisms has tried to understand the diseases processes associated with dementia. Using a mouse model of VCI we have reported that deficiencies in folic acid, either dietary or genetic affect the onset and progression of VCI. Using the Morris water maze task we report that mice with VCI and folate deficiency performed significantly worse compared to controls. We assessed changes in the brain using MRI and interestingly found that folate deficiency changed the vasculature in the brain of mice with VCI. Because of either a genetic or dietary folate deficiency all the mice had increased levels of homocysteine. Our results suggest that it is not elevated levels of homocysteine making the brain more vulnerable to damage, but the deficiency in folic acid, either dietary or genetic that changes the brain. In the cell folic acid is involved in DNA synthesis and repair as well as methylation. These are vital functions for normal cell function. Therefore, reduced levels of folate may be changing the cells in the brain and making them more vulnerable to any types of damage. We think that high levels of homocysteine may just be an indication of some deficiency (e.g. reduced dietary intake of folic acid). Maintaining normal levels of homocysteine are needed, since studies in humans have shown that elevated levels in homocysteine are a risk factor for neurodegenerative diseases and that reducing them is beneficial. Folic acid is a B-vitamin and is well known for its role during early neurodevelopment. It promotes the closure of the neural tube in utero. The neural tube in the developing embryo is the first step to forming the brain and spinal cord. If the neural tube does not close, it can lead to neural tube defects (NTDs), such as spina bifida. Women of child bearing age are recommended to supplement their diet with 0.4 -1 mg of folic acid daily. Additionally, to reduce the number of NTDs mandatory folic acid fortification laws were put into place in 1998 in the US and Canada, as well as other countries around the world. In response to mandatory fortification, there has been a reduction in the number of NTDs in both Canada and the US.
Recently, maternal over supplementation of folic acid has raised some concerns. Over supplementation is defined as ingesting over 1 mg of folic acid daily. There has been an increase in over supplementation of folic acid in the US and Canada where mandatory folic acid fortification laws are in place and supplement use is high. Epidemiological studies have reported that too much folic acid has been associated with increased risk of cancer. Interestingly, too much maternal folic acid intake has been associated with autism spectrum disorder, but the data is not clear as other studies have reported the protective effects. Furthermore, too much maternal folic acid has been reported to change neurodevelopment in animals. A recent published study investigated whether too much maternal folic acid is associated with changes in the neurodevelopment of offspring. Using a mouse model of maternal over supplementation of folic acid the authors report that male offspring from mothers that were fed high levels of folic acid had impaired memory and brain development. The amount of folic acid in the diet of mothers was 20mg/kg to model over supplementation in humans. Animals from mothers with over supplementation of folic acid did not remember seeing a familiar object as well as control animals did. Furthermore, they had reduced levels of a neurotransmitter that is important in learning and memory called acetylcholine. These are some of the first results showing how maternal over supplementation with folic acid may affect early neurodevelopment. We recently published an up-to-date review of how maternal over supplementation of folic acid impacts offspring neurodevelopment. Our comprehensive analysis includes studies from human populations as well as basic science studies to understand how things in the brain as well as behaviors are changing when mothers are supplementing with too much folic acid. More studies are required to understand the full impact of how maternal over supplementation studies affect offspring neurological development. As someone wise once said, everything in moderation. I wrote this post the Addictive Brain, originally posted here.
The brain is a very complex organ and requires a lot of resources from the body. I am a neuroscientist that studies the brain and how what we eat impacts brain function. The component of nutrition that my research focuses on is called folic acid, which is a B-vitamin. Folic acid is a water-soluble vitamin, meaning that it does not stay in our body for very long, so we need a constant intake. The bacteria in our gut makes a bit of folic acid, but not enough to meet our body’s requirements. The food that we eat is a good source of folic acid. Food like leafy greens, lentils, and liver are all a good source of folic acid. Most people know folic acid because of its’ protective role during early brain development. Women that are of child bearing age are recommended to take folic acid prior to getting pregnant because the vitamin helps close the neural tube. The neural tube is future brain and spinal cord. If the neural tube does not close, it can lead to the development of neural tube defects (NTDs) in babies, such as spina bifida. To prevent the NTDs, mandatory folic acid fortification laws were put into place in 1998 in both the US and Canada, as well as other countries. It is important to note that since 1998 there has been a reduction in the number of NTDs in both Canada and the US. To understand how folic acid impacts brain function, my research uses mice. I am going to share with you 2 studies that have examined the role of maternal dietary folic acid intake on offspring brain and behavior function. In the first study, female mice were put on a folic acid deficient diet prior to pregnancy and remained on the same diet after they gave birth. When the pups were 3-weeks-of-age, I tested their memory function. Three-week-old mice are equivalent to young adults. I found that pups were on a folic acid deficient diet had impaired memory compared to control diet. These mice also had changes in the area of the brain called the hippocampus, which is well known for its’ role in learning and memory. In hippocampi of folic acid deficient diet pups, I found reduced levels of acetylcholine, a neurotransmitter. These findings suggest that maternal folic acid impairs brain function after birth. These data suggest that folic acid is may not only needed prior to pregnancy, but also during pregnancy. Last year, we published a study investigating whether too much maternal folic acid is associated with changes in the neurodevelopment of offspring. Using a mouse model of maternal over supplementation of folic acid we report that male offspring from mothers that were fed high levels of folic acid had impaired memory and brain development. These are some of the first results showing how maternal over supplementation with folic acid may affect early neurodevelopment. More studies are required to further dissect the mechanisms as well as determine if the benefits continue into adulthood. As someone wise once said, everything in moderation. This post was written for the Journal of Young Investigators, available here.
Presenting data can be a challenge, in terms of public speaking. I struggled with it when I started my scientific training and still do, but I have been doing it consistently 16 years. It does get easier, I still get nervous, but it is manageable. This blog post was written for the Graduate Women in Science in June 2018!
In the biomedical sciences, postdoctoral training is an opportunity for a young scientist to gain more research experience. Traditionally, this has been viewed as a short period of training. However, recent data shows that postdoc fellowships are lasting longer than before, and most young scientists are completing more than one postdoc in order to be competitive for an independent position (e.g. tenure track or assistant professor positions). My name is Nafisa Jadavji and I am neuroscientist studying how nutrition impacts brain function. I am in my sixth year of postdoctoral training. I am a Canadian, and after completing my PhD in 2012 at McGill University, I moved to Berlin in Germany for my first postdoctoral fellowship at the Charité Medical University. In 2015, I moved back to Canada to start my second postdoc where I have been working since. The aim of this article is to share my experience as a postdoc and what I think are some important points when considering a postdoc position and training. I knew postdoctoral training was what I wanted to do after my finishing my PhD, I absolutely love doing research. However, this is not the case for everyone, and that is totally OK - every person has a different path. I realized early in my graduate training that a large part of research is self-motivated. If you don’t like what you are doing than it will be hard to do it every day. I knew for my postdoc, I wanted to work on projects that I was passionate about. I also really liked working independently, so freedom to pursue the questions I wanted was important to me. I think finding something that you are passionate about during your postdoctoral training is vital. Postdoc training requires a lot of independent work and self-motivation, and if you are working on something you don’t like it will be hard to keep things moving forward. Science is hard; experiments fail more times than they work. Papers are rejected more than they are accepted. The same goes for grants. Being passionate about what you want to study is important. Also, surrounding yourself with people that are supportive is essential. This includes picking a research group. During my search for a postdoc lab, I knew the area of research I wanted to focus on. So, I hit the literature and read a lot. I found a few groups whose research focus interested me. I then started to contact them. My contact email included a summary of my PhD work (novel findings and expertise in techniques), as well as why I was specifically interested in the research group. I also mentioned my motivation to apply for funding and attached my PhD transcripts as well as an extensive CV to the email. I then tried to set up in person visits to the labs where there was a mutual interest expressed. I knew for my postdoc I wanted to move to Europe, so I focused my search there. In the summer of 2011, I planned a trip to visit 3 labs, two in the UK and one in Germany. During my visits, I gave presentations on my research, met with the principal investigators, as well as staff and students in the research group. During my meeting with principal investigators I discussed opportunities for projects, and what my role in the research group would be. I also brought up applying for funding, in terms of my salary as a postdoc and small research grants. From my previous experience, after talking to mentors and others in my field I decided that I would apply for funding, in hopes to get a fellowship. Getting a fellowship would give me the independence I sought; I could purse the research questions I wanted. During my last year of PhD work, I applied for five fellowships and I was successful in one. It was a great relief to have my own funding. Writing grant applications is a lot of work, but it is a good learning experience. In 2016, I attended the Cold Spring Harbor Scientific Retreat. This helped a lot with improving my writing and I would recommend it to everyone who is doing a postdoc. So far in my postdoctoral training, I have applied for 14 fellowships, 7 travel awards, and 13 operating grants. My recommendation is to apply for everything you can during your training. The writing is time-consuming, but you learn a lot about writing applications, formulating research questions, asking for feedback, and dealing with rejection. All of which are key factors for success in science. I think another important component of postdoctoral training is to learn how to mentor and supervise students in and outside of the lab. While I was in Germany, I supervised four Masters of Science students and I really enjoyed it. Teaching them technical skills as well as working with them on projects and giving feedback on writing was a blast for me. I had some challenging students, but I also had some great ones. It was a rewarding experience from which I learned a lot. I would highly recommend getting involved in student supervision and even teaching classes, if possible. It does take away time from the lab, but I think teaching has helped me a lot with my research. After moving back to Canada in 2015 I started to get more involved in science communication. I presented my research to lay people. This has been challenging, but in a good way. As a scientist, I think it is important to be able to share research findings with anyone. Some ways I have gotten involved in science communication is through writing guest blogs (e.g. American Society for Nutrition and AlzScience Blog), as well as giving talks at Scientific Café and Pint of Science events. During my graduate training I have tried to maintain some sort of service component. I have been involved in organizations like the Canadian Association of Postdoctoral Scholars and I continue to serve on the Journal of Young Investigators Board of Directors. I really enjoy volunteering my time; it has been something I have done since a very early age. To help with postdoctoral training goals and plans, the ‘Individual Development Plan’ has recently been implemented. I have not used this in my postdoctoral training, but I think if used correctly, it can help trainees set out clear goals, increase communication with supervisors and mentors, as well as provide regular check-ins to see how things are going. For further resources, Science and PLoS also offer some great advice about choosing a postdoc lab. I think the postdoctoral training can be a really fun time to do science and learn a lot. Feel free to visit my website and contact me with any questions or comments you may have. I wish you all the best with your scientific training! This blog post was published on the American Society for Nutrition, in May 2018.
A stroke occurs when there is reduced blood flow to the brain. Blood carries oxygen and glucose to cells in the brain. When there is reduced levels of blood, these cells start to die. Since the brain controls behavior, this cell death leads to impairments in function. The impairments are dependent on where the stroke happens in the brain. There are two main types of stroke, hemorrhagic and ischemic. For this blog, I will be focusing on ischemic stroke which is a result of blockage in a blood vessel. Currently, stroke affects older individuals and the global population is aging according to the United Nations. Additionally, older individuals also lose their ability to absorb all the vitamins and nutrients they require from their diet as they age. Nutrition is a modifiable risk factor for diseases of aging. For example, B-vitamins absorption decreases as individuals age. B-vitamins play a major role in reducing levels of homocysteine, a non-protein amino acid. High levels of homocysteine have been associated with increased risk to develop cardiovascular diseases, such as stroke. Supplementation with B-vitamins has been reported to have positive effects on brain health. A study by researchers in Oxford University and University of Oslo has shown that B-vitamin supplementation in the elderly within the United Kingdom reduced age-related brain atrophy after 2 years of supplementation. Furthermore, another study by the same group reported that B-vitamin supplementation reduced cerebral atrophy in areas vulnerable to Alzheimer’s disease. More recently, a group from China reported that folic acid supplementation in combination with Enalapril, used to treat heard disease, reduced the risk of stroke by 21% in patients that were hypertensive. Within the aging population, B-vitamin supplementation has been reported to have positive effects on brain health. The elderly are more prone to ischemic stroke, but the mechanisms through which this benefit accomplished is not well understood. A recent study investigating the role of B-vitamin supplementation on ischemic stroke was published in the Neurobiology of disease. This study tried to examine the mechanisms of how supplementation improved brain function. A group of wildtype males were put on a folic acid deficient diet (0.2 mg/kg) prior to ischemic damage to increase levels of homocysteine and another group of mice were put on a control diet (2mg/kg folic acid). After ischemic damage to the sensorimotor cortex, FADD mice were put on a supplemented diet, where levels of folic acid, riboflavin, vitamin B12, and choline were increased. Animals were maintained on the diets for 4-weeks after which motor function was assessed. Researchers found that supplemented diet mice performed better on motor tasks compared to CD mice with ischemic damage. In the brain tissue increased levels of plasticity and antioxidant activity were reported. Combination therapies for stroke affected patients are thought to be most effective. A pharmaceutical in combination with a life style change, such as increase exercise may be beneficial for stroke affected patients. This data suggests that nutrition may also be a viable option for life style change ischemic damage. This text was originally published on Current Exchange: a blog by CHSL Meeting & Courses.
Meet Nafisa M. Jadavji of Carleton University (Canada). Nafisa is a postdoctoral fellow in Patrice Smith’s lab and a course instructor in the Department of Neuroscience. She returned to the Banbury Campus to participate in the three-day Workshop on Leadership in Bioscience to help her be “better prepared for [her] near-future role.” What are your research interests? What are you working on? My research uses a mouse model to assess how nutrition affects neurological function over the lifespan. I am presently concentrating on neurodegeneration associated to stroke and dementia. My own research group will continue to work on this as well as incorporate the impact of maternal nutrition contributions on long-term offspring neurological function. How did you decide to make this the focus of your research? My scientific training in the field of neuroscience started in 2002. In 2008, during my PhD with Dr. Rima Rozen’s laboratory at McGill University, I began studying – and fell in love with – how nutrition impacts brain function and I have been contributing to the field since. How did your scientific journey begin? I really enjoyed my high school science classes. During my 11th grade biology class, I learned about the brain – specifically what the synapse and neuromuscular junction are and their function – and I became fascinated with how the brain works to control our behaviours. This lead me to pursue neuroscience at the University of Lethbridge where, in 2002, I also got involved in basic research and never left. Was there something about the Workshop on Leadership in Bioscience that drew you to apply? As a Neuroscientist I think my training as a scientist has been extensive. However, when it comes to learning how to lead a research group and manage people, I know I lack that training. The topics covered during the workshop are very applicable to recruiting, as well as running a successful and productive research group which will be helpful to me when I start my research group . What is your key takeaway from the workshop? Being the leader of a laboratory is hard work but the workshop and the tools it gave me have helped me to feel better prepared for my near-future role. What and/or how will you apply what you’ve learned from the Workshop to your work? Carl Cohen, the instructor, provided extensive details about interviewing potential candidates (e.g. graduate students or postdocs). He gave us tools to help make the hiring process more consistent for candidates by introducing us to score sheets for each component of the hiring process (e.g. CV, phone interview, reference checks). I will be using these score sheets and guides as I recruit staff and students for my research group. How many CSHL courses/workshops have you attended? I also attended the Scientific Writing Retreat in 2016. I enjoyed the two courses I have attended and am open to attending more in the future, as well as sending my students and staff to future CSHL courses. If someone curious in attending a future iteration of the Workshop on Leadership in Bioscience asked you for feedback or advice on it, what would you tell him/her? I would recommend the workshop to anyone who plans to hire and manage people in a scientific setting. Though highly-motivated graduate students may benefit from this course, I think senior postdocs and people who have recently started their own independent group would gain the most from the course. What do you like most about your time at CSHL's Banbury Campus? I am runner and the Banbury Campus is a great place to go on an early morning run. I also enjoyed having meals with the other participants. Nafisa received financial support from the Howard Hughes Medical Institute (HHMI) to cover a portion of her course tuition. On behalf of Nafisa, thank you to HHMI for supporting and enabling our young scientists to attend a CSHL course where they expand their skills, knowledge, and network. Thank you to Nafisa for being this week's featured visitor. |
Archives
October 2023
Categories |